If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2=96
We move all terms to the left:
w^2-(96)=0
a = 1; b = 0; c = -96;
Δ = b2-4ac
Δ = 02-4·1·(-96)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{6}}{2*1}=\frac{0-8\sqrt{6}}{2} =-\frac{8\sqrt{6}}{2} =-4\sqrt{6} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{6}}{2*1}=\frac{0+8\sqrt{6}}{2} =\frac{8\sqrt{6}}{2} =4\sqrt{6} $
| x-8=5.6 | | F(3)=25x+200 | | 13p-10=20+7p | | -1.53x=3 | | -2/3t-6-1/36=-3/4t-8 | | 9(y+2)=-6 | | –5m−10=–7m | | h(3)=3(3)-4 | | 8a+12=5a+30 | | f(3)=-93+7 | | 3/2n^2+24=0 | | h(0)=3(0)-4 | | 0.5/8=20/x | | 3/5n+9/10=-1/5n-23=10 | | 2b+51=57 | | h(-2)=3(-2)-4 | | 20+3x=60 | | 20+x(3)=60 | | 3=x+1.4 | | 4w+12=2(6+2w) | | 14x-30=38-3x | | 5-2x=-4x+9=5-2x=-4x+9 | | V=49.05+a10 | | 4x2+9+15x=0 | | 48.6,5i+18i1=0 | | V=-4.91+a10 | | V=4.91+a10 | | 5-2(X-1)=-3(x-5) | | 33-5x=-42 | | 5^x^2-4=125^x | | x+3=5.1/3 | | 104-10x=7x-15 |